
Supplementary Notes 
Supplementary Note S1 Transfer learning 
Drug Repurposing Knowledge Graph (DRKG) comprises 97,238 nodes (from 13 node types 
including gene, molecular function, pathway, disease, symptom, anatomy, cellular component, 
compounds, side effect, ATC, and pharmacologic class) and 5,874,261 interactions (from 107 edge 
types from the 17 entity types). These nodes and interactions are collected from various databases 
including DrugBank, HetioNet, GNBR, STRING, IntAct, and DGLdb 1. We utilized the DRKG 
via transferring DRKG pre-trained node embedding (that is trained with a translation embedding 
model) 2. The pre-trained node embedding was used as an initial node embedding in our SARS-
CoV-2 knowledge graph, and we fine-tuned the embedding toward the selected SARS-CoV-2 
interactions by updating them via the iterative message passing and aggregation. Our SARS-CoV-
2 knowledge graph partly overlaps with the DRKG; the number of overlap was 1,138 drugs (out 
of 3,635), 5,666 genes (out of 5,677), and 970 phenotypes (out of 1,285). The node embedding of 
the non-overlapped nodes was set as zero vectors initially and updated along with message 
propagation.  
 
 
Supplementary Note S2 Calculating the treatment effect 
We had two steps for balancing the confounders: i) initial case and control matching using 
propensity score (PSM) and ii) weighting treatment effect using the propensity score. PSM is a 
principled approach to align patients based on the confounders (e.g., demographics and admission 
severity) 3. The propensity score is defined as 𝜋(𝑋𝑖) = 𝑓(𝑇𝑖 = 1|𝑋𝑖), where 𝑋"is the patient 𝑖’s 
covariates; 𝑇"is a binary indicator on whether a patient𝑖 receives treatment; and 𝑓is a function to 
predict the probability of the patient 𝑖 receiving the treatment (𝑇" = 1). In this way, we can 
represent the likelihood of receiving the treatment at a population level. Calculating the treatment 
effect is to measure the causal effect of treatments (i.e., candidate drugs) as balancing the 
confounders between the treated and their counterfactuals based on the likelihood of receiving the 
treatment. The average treatment effect (ATE) compares the average outcome (deceased𝑌" = 0 or 
recovered 𝑌" = 1) in the presence or absence of the treatment𝐴𝑇𝐸 = 𝐸(𝑌" = 1) 	− 	𝐸(𝑌" = 0). 
Using the inverse propensity score weighting method 4, ATE can be written as 𝐴𝑇𝐸. =
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], which intuitively suppresses the impact of highly predictable records 

(e.g., 𝜋(𝑋𝑖) ∼ 1and𝑇" = 1, 𝜋(𝑋𝑖) ∼ 0and 𝑇" = 0) while giving high weight to the rest (i.e., much 
random in terms of all observed confounders). The average treatment effect on the treated (ATT) 
is similarly defined as ATE but focused on the among the treated 𝐴𝑇𝑇 = 𝐸(𝑌" = 1|𝑇" = 1) 	−
	𝐸(𝑌" = 0|𝑇" = 1)that tests the mean differences between those treated vs. their counterfactuals. 
We can calculate ATT similarly by limiting the sample to the treated patients. ATT is often more 
realistic than ATE because not every patient has a chance to be treated. 
 
 
Supplementary Note S3 Re-ordering the validated drugs 



We present the final validated drugs based on the existence of supportive external evidence.  
We have genetic (GSEA score), mechanistic (four in-vitro drug screening results), and population-
based (EHRs) evidence. These validation sources only covered a part of the drug candidates and 
sometimes conflict with each other. Integrating the different aspects of evidence to identify high-
confidence drugs requires a careful aggregation method. We preferred the population-based 
evidence over the in-vitro or genetic evidence. Our approach to aggregate the different evidence 
into a confidence score or ranking is to use data programming, which is implemented in Snorkel 5. 
Data programming is to aggregate weak labels into a single confidence score by inferring causal 
dependency among the weak labels. Our rules to define the weak labels are as follows: 

- Rule1: If a drug is under trial; then the drug is positive, otherwise unknown, 
- Rule2: If a drug was effective in EHRs; then the drug is positive, otherwise unknown, 
- Rule3: If a drug is effective in any of four in-vitro experiments; then the drug is positive, 

otherwise unknown 
- Rule3: If a drug is effective in GSEA; then the drug is positive, otherwise unknown 
- Rule4: If a drug was not effective in EHRs nor efficacious in all in-vitro screening; then 

the drug is negative, otherwise unknown 
 
Supplementary Note S4 Genetic validation using gene set enrichment analysis 

For the genetic validation, we evaluated the drugs by calculating GSEA scores between 
gene expression profiles of SARS-CoV-2-infected host cells and the gene signature of the drugs. 
The SARS-CoV-2 genetic profile was three samples from SARS-CoV-2 infected primary human 
airway epithelial cell lines6 and three mock-infected (PBS) cell lines (GSE153970). Deseq2 was 
used to detect the differentially expressed genes (DEGs) by adjusted p-value less than 0.01 7. The 
up-regulated and down-regulated genes from DEGs were considered as an up-regulated SARS-
CoV-2 signature and down-regulated SARS-CoV-2 signature. The drug’s genetic profiles were 
obtained from the drug-induced gene expression in cMAP (GSE92742 and 
GSE70138)(Subramanian et al. 2017). The whole drugs’ gene probe set was ordered from the 
highest up-regulated genes to the lowest down-regulated genes. 

The enrichment score (ES) was calculated to reflect the correlation between the SARS-
CoV-2 signature and the drug’s gene expression by connectivity map algorithms 8. The hypothesis 
was that if the drug’s gene expression is opposite with the disease up-regulated or down-regulated 
signature, the drug tends to treat disease 9. ES is calculated as follows 10: 
𝐸𝑆 = (𝐸𝑆-. − 𝐸𝑆/01#)/2	𝑖𝑓	𝑠𝑔𝑛8𝐸𝑆-.9 ≠ 𝑠𝑔𝑛(𝐸𝑆/01#); 	𝑒𝑙𝑠𝑒	0. 

𝐸𝑆-. is the enrichment score for SARS-CoV-2 up-regulated signature; 𝐸𝑆/01# is the enrichment 
score for SARS-CoV-2 down-regulated signature. If 𝐸𝑆-.and 𝐸𝑆/01#have the same algebraic sign, 
the value of final ES is set to 0. Otherwise, ES is the difference between 𝐸𝑆-. and𝐸𝑆/01#. 
𝐸𝑆/01# and 𝐸𝑆/01#  was calculated based on the weighted Kolmogorov-Smirnov enrichment 
statistic (ES). In order to obtain p-value, permutation tests were done by randomly generating the 
same number of genes as upregulated gene set and downregulated gene set separately and thus we 
can get the null distribution of random ES. We identified a significant genetic association between 



the drug and the disease by setting a threshold as ES < 0 and p-value <0.05, which means a drug 
has opposite effects for both up-regulated SARS-CoV-2 (𝐸𝑆-.< 0) and down-regulated SARS-
CoV-2 set (𝐸𝑆/01#> 0). 

 
 
 
Reference 

1. gnn4dr. gnn4dr/DRKG. GitHub https://github.com/gnn4dr/DRKG. 

2. Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, Oksana Yakhnenko. 

Translating Embeddings for Modeling Multi-relational Data. in Advances in Neural Information 

Processing Systems 26 (NIPS 2013). 

3. Patorno, E., Grotta, A., Bellocco, R. & Schneeweiss, S. Propensity score methodology for 

confounding control in health care utilization databases. Epidemiology, Biostatistics and Public 

Health 10, (2013). 

4. Bauer, P. C. 4.15 ATE: Average Treatment Effect. https://bookdown.org/paul/applied-causal-

analysis/ate.html. 

5. Ratner, A., De Sa, C., Wu, S., Selsam, D. & Ré, C. Data Programming: Creating Large Training 

Sets, Quickly. Adv. Neural Inf. Process. Syst. 29, 3567–3575 (2016). 

6. Vanderheiden, A. et al. Type I and Type III IFN Restrict SARS-CoV-2 Infection of Human Airway 

Epithelial Cultures. J. Virol. (2020) doi:10.1128/JVI.00985-20. 

7. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-

seq data with DESeq2. Genome Biol. 15, 1–21 (2014). 

8. Subramanian, A. et al. A Next Generation Connectivity Map: L1000 Platform and the First 

1,000,000 Profiles. Cell 171, 1437–1452.e17 (2017). 

9. Sirota, M. et al. Discovery and preclinical validation of drug indications using compendia of public 

gene expression data. Sci. Transl. Med. 3, 96ra77 (2011). 

10. Lamb, J. The Connectivity Map: Using Gene-Expression Signatures to Connect Small Molecules, 

Genes, and Disease. Science vol. 313 1929–1935 (2006). 



 
 


